博客
关于我
bzoj 2956: 模积和
阅读量:259 次
发布时间:2019-03-01

本文共 1174 字,大约阅读时间需要 3 分钟。

题意:求
nimj(n mod i)(m mod j)(i!=j)

题解:

我各种sb错误荒废了一上午啊啊啊。

先无视限制:即

ni(n mod i)mj(m mod j)
同bzoj 1257()
然后要减去相等的情况。
min(n,m)i(n mod i)(m mod i)
=min(n,m)i(nnii)(mmii)
=min(n,m)i(nm)(nim+min)+nimii2
然后就能分块了。

注意:乘一步mod一步啊啊啊!!!

code:

#include
#include
#include
#include
#define LL long longusing namespace std;const LL mod=19940417,inv=3323403;LL sum(LL l,LL r){ return ((LL)(r-l+1)*(LL)(l+r)/2)%mod;}LL sum_2(LL n){ return (LL)n*(LL)(n+1)%mod*(LL)(2*n+1)%mod*inv%mod;}LL solve(LL n){ LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=(n/(n/i)); ans=(ans+((LL)n*(pos-i+1)-(LL)(n/i)*sum(i,pos))%mod)%mod; } return ans;}LL solve2(LL n,LL m){ if(n>m) swap(n,m); LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=min(n/(n/i),m/(m/i)); LL t1=n*m%mod*(pos-i+1)%mod,t2=sum(i,pos)%mod*(n*(m/i)%mod+m*(n/i)%mod)%mod,t3=(m/i)*(n/i)%mod*(sum_2(pos)-sum_2(i-1)+mod)%mod; t3=(t3+mod)%mod; ans=((ans+(t1-t2+t3)%mod)+mod)%mod; } return ans;}LL n,m;int main(){ scanf("%lld %lld",&n,&m); printf("%lld",((solve(n)*solve(m)%mod-solve2(n,m))%mod+mod)%mod);}

转载地址:http://rdza.baihongyu.com/

你可能感兴趣的文章
MySQL 中开启二进制日志(Binlog)
查看>>
MySQL 中文问题
查看>>
MySQL 中日志的面试题总结
查看>>
mysql 中的all,5分钟了解MySQL5.7中union all用法的黑科技
查看>>
Mysql 中的日期时间字符串查询
查看>>
MySQL 中锁的面试题总结
查看>>
MySQL 中随机抽样:order by rand limit 的替代方案
查看>>
MySQL 为什么需要两阶段提交?
查看>>
mysql 为某个字段的值加前缀、去掉前缀
查看>>
mysql 主从
查看>>
mysql 主从 lock_mysql 主从同步权限mysql 行锁的实现
查看>>
mysql 主从互备份_mysql互为主从实战设置详解及自动化备份(Centos7.2)
查看>>
mysql 主从关系切换
查看>>
mysql 主键重复则覆盖_数据库主键不能重复
查看>>
Mysql 优化 or
查看>>
mysql 优化器 key_mysql – 选择*和查询优化器
查看>>
MySQL 优化:Explain 执行计划详解
查看>>
Mysql 会导致锁表的语法
查看>>
mysql 使用sql文件恢复数据库
查看>>
mysql 修改默认字符集为utf8
查看>>