博客
关于我
bzoj 2956: 模积和
阅读量:259 次
发布时间:2019-03-01

本文共 1174 字,大约阅读时间需要 3 分钟。

题意:求
nimj(n mod i)(m mod j)(i!=j)

题解:

我各种sb错误荒废了一上午啊啊啊。

先无视限制:即

ni(n mod i)mj(m mod j)
同bzoj 1257()
然后要减去相等的情况。
min(n,m)i(n mod i)(m mod i)
=min(n,m)i(nnii)(mmii)
=min(n,m)i(nm)(nim+min)+nimii2
然后就能分块了。

注意:乘一步mod一步啊啊啊!!!

code:

#include
#include
#include
#include
#define LL long longusing namespace std;const LL mod=19940417,inv=3323403;LL sum(LL l,LL r){ return ((LL)(r-l+1)*(LL)(l+r)/2)%mod;}LL sum_2(LL n){ return (LL)n*(LL)(n+1)%mod*(LL)(2*n+1)%mod*inv%mod;}LL solve(LL n){ LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=(n/(n/i)); ans=(ans+((LL)n*(pos-i+1)-(LL)(n/i)*sum(i,pos))%mod)%mod; } return ans;}LL solve2(LL n,LL m){ if(n>m) swap(n,m); LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=min(n/(n/i),m/(m/i)); LL t1=n*m%mod*(pos-i+1)%mod,t2=sum(i,pos)%mod*(n*(m/i)%mod+m*(n/i)%mod)%mod,t3=(m/i)*(n/i)%mod*(sum_2(pos)-sum_2(i-1)+mod)%mod; t3=(t3+mod)%mod; ans=((ans+(t1-t2+t3)%mod)+mod)%mod; } return ans;}LL n,m;int main(){ scanf("%lld %lld",&n,&m); printf("%lld",((solve(n)*solve(m)%mod-solve2(n,m))%mod+mod)%mod);}

转载地址:http://rdza.baihongyu.com/

你可能感兴趣的文章
Mysql学习总结(78)——MySQL各版本差异整理
查看>>
Mysql学习总结(79)——MySQL常用函数总结
查看>>
Mysql学习总结(7)——MySql索引原理与使用大全
查看>>
Mysql学习总结(80)——统计数据库的总记录数和库中各个表的数据量
查看>>
Mysql学习总结(81)——为什么MySQL不推荐使用uuid或者雪花id作为主键?
查看>>
Mysql学习总结(82)——MySQL逻辑删除与数据库唯一性约束如何解决?
查看>>
Mysql学习总结(83)——常用的几种分布式锁:ZK分布式锁、Redis分布式锁、数据库分布式锁、基于JDK的分布式锁方案对比总结
查看>>
Mysql学习总结(84)—— Mysql的主从复制延迟问题总结
查看>>
Mysql学习总结(85)——开发人员最应该明白的数据库设计原则
查看>>
Mysql学习总结(8)——MySql基本查询、连接查询、子查询、正则表达查询讲解
查看>>
Mysql学习总结(9)——MySql视图原理讲解与使用大全
查看>>
MySQL学习笔记十七:复制特性
查看>>
Mysql学习第一课-mysql的定义及sql语句
查看>>
mysql安全模式: sql_safe_updates
查看>>
mysql安装,卸载,连接
查看>>
MySQL安装之没有配置向导
查看>>
mysql安装出现 conflicts with mysql*的解决办法
查看>>
mysql安装卡在最后一步解决方案(附带万能安装方案)
查看>>
mysql安装和启动命令小结
查看>>
Mysql安装教程(命令行)
查看>>