博客
关于我
bzoj 2956: 模积和
阅读量:259 次
发布时间:2019-03-01

本文共 1174 字,大约阅读时间需要 3 分钟。

题意:求
nimj(n mod i)(m mod j)(i!=j)

题解:

我各种sb错误荒废了一上午啊啊啊。

先无视限制:即

ni(n mod i)mj(m mod j)
同bzoj 1257()
然后要减去相等的情况。
min(n,m)i(n mod i)(m mod i)
=min(n,m)i(nnii)(mmii)
=min(n,m)i(nm)(nim+min)+nimii2
然后就能分块了。

注意:乘一步mod一步啊啊啊!!!

code:

#include
#include
#include
#include
#define LL long longusing namespace std;const LL mod=19940417,inv=3323403;LL sum(LL l,LL r){ return ((LL)(r-l+1)*(LL)(l+r)/2)%mod;}LL sum_2(LL n){ return (LL)n*(LL)(n+1)%mod*(LL)(2*n+1)%mod*inv%mod;}LL solve(LL n){ LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=(n/(n/i)); ans=(ans+((LL)n*(pos-i+1)-(LL)(n/i)*sum(i,pos))%mod)%mod; } return ans;}LL solve2(LL n,LL m){ if(n>m) swap(n,m); LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=min(n/(n/i),m/(m/i)); LL t1=n*m%mod*(pos-i+1)%mod,t2=sum(i,pos)%mod*(n*(m/i)%mod+m*(n/i)%mod)%mod,t3=(m/i)*(n/i)%mod*(sum_2(pos)-sum_2(i-1)+mod)%mod; t3=(t3+mod)%mod; ans=((ans+(t1-t2+t3)%mod)+mod)%mod; } return ans;}LL n,m;int main(){ scanf("%lld %lld",&n,&m); printf("%lld",((solve(n)*solve(m)%mod-solve2(n,m))%mod+mod)%mod);}

转载地址:http://rdza.baihongyu.com/

你可能感兴趣的文章
mysql 实现主从复制/主从同步
查看>>
mysql 审核_审核MySQL数据库上的登录
查看>>
mysql 导入 sql 文件时 ERROR 1046 (3D000) no database selected 错误的解决
查看>>
mysql 导入导出大文件
查看>>
mysql 将null转代为0
查看>>
mysql 常用
查看>>
MySQL 常用列类型
查看>>
mysql 常用命令
查看>>
Mysql 常见ALTER TABLE操作
查看>>
mysql 往字段后面加字符串
查看>>
mysql 快速自增假数据, 新增假数据,mysql自增假数据
查看>>
Mysql 报错 Field 'id' doesn't have a default value
查看>>
MySQL 报错:Duplicate entry 'xxx' for key 'UNIQ_XXXX'
查看>>
mysql 排序id_mysql如何按特定id排序
查看>>
Mysql 提示:Communication link failure
查看>>
mysql 插入是否成功_PDO mysql:如何知道插入是否成功
查看>>
Mysql 数据库InnoDB存储引擎中主要组件的刷新清理条件:脏页、RedoLog重做日志、Insert Buffer或ChangeBuffer、Undo Log
查看>>
mysql 数据库备份及ibdata1的瘦身
查看>>
MySQL 数据库备份种类以及常用备份工具汇总
查看>>
mysql 数据库存储引擎怎么选择?快来看看性能测试吧
查看>>