博客
关于我
bzoj 2956: 模积和
阅读量:259 次
发布时间:2019-03-01

本文共 1174 字,大约阅读时间需要 3 分钟。

题意:求
nimj(n mod i)(m mod j)(i!=j)

题解:

我各种sb错误荒废了一上午啊啊啊。

先无视限制:即

ni(n mod i)mj(m mod j)
同bzoj 1257()
然后要减去相等的情况。
min(n,m)i(n mod i)(m mod i)
=min(n,m)i(nnii)(mmii)
=min(n,m)i(nm)(nim+min)+nimii2
然后就能分块了。

注意:乘一步mod一步啊啊啊!!!

code:

#include
#include
#include
#include
#define LL long longusing namespace std;const LL mod=19940417,inv=3323403;LL sum(LL l,LL r){ return ((LL)(r-l+1)*(LL)(l+r)/2)%mod;}LL sum_2(LL n){ return (LL)n*(LL)(n+1)%mod*(LL)(2*n+1)%mod*inv%mod;}LL solve(LL n){ LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=(n/(n/i)); ans=(ans+((LL)n*(pos-i+1)-(LL)(n/i)*sum(i,pos))%mod)%mod; } return ans;}LL solve2(LL n,LL m){ if(n>m) swap(n,m); LL ans=0;LL pos; for(LL i=1;i<=n;i=pos+1) { pos=min(n/(n/i),m/(m/i)); LL t1=n*m%mod*(pos-i+1)%mod,t2=sum(i,pos)%mod*(n*(m/i)%mod+m*(n/i)%mod)%mod,t3=(m/i)*(n/i)%mod*(sum_2(pos)-sum_2(i-1)+mod)%mod; t3=(t3+mod)%mod; ans=((ans+(t1-t2+t3)%mod)+mod)%mod; } return ans;}LL n,m;int main(){ scanf("%lld %lld",&n,&m); printf("%lld",((solve(n)*solve(m)%mod-solve2(n,m))%mod+mod)%mod);}

转载地址:http://rdza.baihongyu.com/

你可能感兴趣的文章
mysql中的rbs,SharePoint RBS:即使启用了RBS,内容数据库也在不断增长
查看>>
mysql中的undo log、redo log 、binlog大致概要
查看>>
Mysql中的using
查看>>
MySQL中的关键字深入比较:UNION vs UNION ALL
查看>>
Mysql主从不同步
查看>>
mysql主从同步及清除信息
查看>>
MySQL主从篇:死磕主从复制中数据同步原理与优化
查看>>
mysql主从配置
查看>>
MySQL之2003-Can‘t connect to MySQL server on ‘localhost‘(10038)的解决办法
查看>>
MySQL之DML
查看>>
mysql之分组查询GROUP BY,HAVING
查看>>
mysql之分页查询
查看>>
mysql之子查询
查看>>
MySQL之字符串函数
查看>>
Mysql之性能优化--索引的使用
查看>>
mysql之旅【第一篇】
查看>>
Mysql之索引选择及优化
查看>>
mysql之联合查询UNION
查看>>
mysql乱码
查看>>
Mysql事务。开启事务、脏读、不可重复读、幻读、隔离级别
查看>>